$\color{black}\rule{365px}{3px}$
“Going deeper with convolutions” - 2014
Link to Paper:
Table of Contents
$\color{black}\rule{365px}{3px}$
Contributions
1st Place in ImageNet Large Scale Visual Recognition Challenge(LSVRC) in 2014
(top-5 test error of 6.67%)
Around 6-million parameters used which is 9x fewer than AlexNet of 2012 and 20x fewer than the second place model VGG-16
New architecture in seek of reducing parameters by introducing inception modules with
$1 \times 1$ conv blocks, still making the network significantly deeper.
<aside> <img src="/icons/light-bulb_blue.svg" alt="/icons/light-bulb_blue.svg" width="40px" /> Inception Module-v1
</aside>
<aside> <img src="/icons/light-bulb_blue.svg" alt="/icons/light-bulb_blue.svg" width="40px" /> Auxiliary Classifier
</aside>